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8-1 Angular Quantities 

In purely rotational motion, all points 
on the object move in circles around 
the axis of rotation (“O”). The radius 
of the circle is r. All points on a 
straight line drawn through the axis 
move through the same angle in the 
same time. The angle θ in radians is 
defined: 

 

where l is the arc length. 
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8-1 Angular Quantities 

Angular displacement:   

Δθ = θ2 – θ1 

The average angular velocity is 
defined as the total angular 
displacement divided by time: 

  

The instantaneous angular velocity: 
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8-1 Angular Quantities 

The angular acceleration is the rate at which the angular 
velocity changes with time: 

  

 

The instantaneous acceleration: 
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8-1 Angular Quantities 

Every point on a rotating body has an angular velocity ω 
and a linear velocity v.  

They are related:  
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8-1 Angular Quantities 

Therefore, objects farther from the axis of rotation will 
move faster. 
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8-1 Angular Quantities 

If the angular velocity of a rotating object changes, it has 
a tangential acceleration: 

  

 

Even if the angular velocity is constant,  
each point on the object has a centripetal 
acceleration: 
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8-1 Angular Quantities 

Here is the correspondence between linear and rotational 
quantities: 
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8-1 Angular Quantities 

The frequency is the number of complete revolutions 
per second: 

f = ω/2π  

Frequencies are measured in hertz.  
1 Hz = 1 s−1 

The period is the time one revolution takes: 
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8-2 Constant Angular Acceleration 

The equations of motion for constant angular 
acceleration are the same as those for linear motion, with 
the substitution of the angular quantities for the linear 
ones. 

© 2014 Pearson Education, Inc. 



8-3 Rolling Motion (Without Slipping) 

In (a), a wheel is rolling without 
slipping. The point P, touching the 
ground, is instantaneously at rest, and 
the center moves with velocity v. 

In (b) the same wheel is seen from  
a reference frame where C is at  
rest. Now point P is moving with  
velocity –v. 

Relationship between linear and 
angular speeds: v = rω 
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8-4 Torque 

To make an object start rotating, a force is needed; the 
position and direction of the force matter as well. 

The perpendicular distance from the axis of rotation to 
the line along which the force acts is called the lever 
arm. 
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8-4 Torque 

A longer lever arm is very helpful in rotating objects.  
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8-4 Torque 

Here, the lever arm for FA is the distance from the knob 
to the hinge; the lever arm for FD is zero; and the lever 
arm for FC is as shown. 
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8-4 Torque 

The torque is defined as: 
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8-5 Rotational Dynamics; 
Torque and Rotational Inertia 

Knowing that F = ma, we see that τ = mr2α 

This is for a single point mass; what about an extended 
object? 

As the angular acceleration is 
the same for the whole object,  
we can write: 
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8-5 Rotational Dynamics; 
Torque and Rotational Inertia 

The quantity I = Σmr2 is 
called the rotational inertia 
of an object. 

The distribution of mass 
matters here—these two 
objects have the same mass, 
but the one on the left has a 
greater rotational inertia, as 
so much of its mass is far 
from the axis of rotation. 
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8-5 Rotational Dynamics; 
Torque and Rotational Inertia 

The rotational inertia of an 
object depends not only on 
its mass distribution but 
also the location of the axis 
of rotation—compare (f) 
and (g), for example. 
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8-6 Solving Problems in Rotational Dynamics 

1. Draw a diagram. 

2. Decide what the system comprises. 

3. Draw a free-body diagram for each object under 
consideration, including all the forces acting on it and 
where they act. 

4. Find the axis of rotation; calculate the torques around 
it. 
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8-6 Solving Problems in Rotational Dynamics 

5. Apply Newton’s second law for rotation. If the 
rotational inertia is not provided, you need to find it 
before proceeding with this step. 

6. Apply Newton’s second law for translation and other 
laws and principles as needed. 

7. Solve. 

8. Check your answer for units and correct order of 
magnitude. 
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8-7 Rotational Kinetic Energy 

The kinetic energy of a rotating object is given by  
KE = Σ(½ mv2) 

By substituting the rotational quantities, we find that the 
rotational kinetic energy can be written: 
 

     

A object that has both translational and rotational motion 
also has both translational and rotational kinetic energy: 
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8-7 Rotational Kinetic Energy 

When using conservation of energy, both rotational and 
translational kinetic energy must be taken into account. 
All these objects have the same potential energy at the 
top, but the time it takes them to get down the incline 
depends on how much rotational inertia they have. 
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8-7 Rotational Kinetic Energy 

The torque does work as it moves the wheel through an 
angle θ: 
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8-8 Angular Momentum and Its Conservation 

In analogy with linear momentum, we can define angular 
momentum L: 

  

We can then write the total torque as being the rate of 
change of angular momentum. 

If the net torque on an object is zero, the total angular 
momentum is constant. 

Iω = I0ω0 = constant 
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8-8 Angular Momentum and Its Conservation 

Therefore, systems that can change their rotational 
inertia through internal forces will also change their rate 
of rotation: 
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8-9 Vector Nature of Angular Quantities 

The angular velocity vector points along the axis of 
rotation; its direction is found using a right hand rule: 
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8-9 Vector Nature of Angular Quantities 

Angular acceleration 
and angular 
momentum vectors 
also point along the 
axis of rotation. 

© 2014 Pearson Education, Inc. 



Summary of Chapter 8 

• Angles are measured in radians; a whole circle is 2π 
radians. 

• Angular velocity is the rate of change of angular 
position. 

• Angular acceleration is the rate of change of angular 
velocity. 

• The angular velocity and acceleration can be related to 
the linear velocity and acceleration. 
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Summary of Chapter 8 

• The frequency is the number of full revolutions per 
second; the period is the inverse of the frequency. 

• The equations for rotational motion with constant 
angular acceleration have the same form as those for 
linear motion with constant acceleration. 

• Torque is the product of force and lever arm. 

• The rotational inertia depends not only on the mass of 
an object but also on the way its mass is distributed 
around the axis of rotation. 
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Summary of Chapter 8 

• The angular acceleration is proportional to the torque 
and inversely proportional to the rotational inertia. 

• An object that is rotating has rotational kinetic energy. 
If it is translating as well, the translational kinetic 
energy must be added to the rotational to find the total 
kinetic energy. 

• Angular momentum is L = Iω 

• If the net torque on an object is zero, its angular 
momentum does not change. 
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